OPERATING INSTRUCTIONS \& SERVICE MANUAL

SOLID-STATE AM/FM STEREOPHONIC TUNER
SANSUI TU_777

SANSUI ELECTRIC COMPANY LIMITED

Thank you for purchasing the Sansui TU-777. In doing so, you have made a wise choice, one that promises you many delightful years of rich stereo enjoyment.
Model TU-777, incorporates the very latest in circuitry design, including a new FET front end for increased FM sensitivity, high stability and low distortion. It also features a dignified black faced front panel, symbolic of all Sansui high-grade sound equipment. Before leaving the Sansui factory, this model was tested, inspected and certified to be in perfect working order.
To keep it that way, it is imperative that you read the Operation section of this manual thoroughly before attempting to install and use the tuner. Since this manual also contains other helpful information on checking and servicing the tuner, and installing it in a custom-made cabinet, you will undoubtably want to retain it for future reference. Again, our sincere thanks for purchasing the TU-777 and our best wishes for many years of trouble-free stereo enjoyment.

CONTENTS

OPERATION SECTION
 Switches \& Controls ... 3, 4

Antenna Connection .. 5, 6
Amplifier Connection..$\ldots \ldots \ldots$
Operation .. 7
General Maintenance .. 7, 8
Specifications/Characteristics 9, 10

Disassembly Procedure... 13
Dial Mechanism .. 13
Custom Mounting ... 14
Test Points Chart ... 15

AM.. 18
Printed-Circuit Sheets \& Parts List 19, 20, 21, 22, 23
Block Diagram ... 24
Other Parts \& Theiv Pusition on Chassis 25, 26

SWITCHES \& CONTROLS

The TU-777 goes on when POWER switch lever is set to ON position. ing FM stations. It should be used sparingly particularly if the tuner is located in a weak signa area. When you want to receive a weak station this switch should be kept off.

FM Stereo Indicator

Illuminates whenever the tuning dial passes station broadcasting an FM-MPX program. Doe not light up for regular FM monaural broadcasts

Power Indicator
Lights up whenever the tuner is receiving cur rent. Remains lit as long as the Power Switch On.

Dial Scales

For more convenient tuning, the TU-777 features a rounded dial window. The outside dial corresponds to the FM band, the inside dial to the AM band. Both bands share a single dial controlled by the Tuning Knob.

Tuning Knob

Use to select both AM and FM stations. Be sure to watch the Tuning Indicator when using this control for pinpoint station accuracy.

Function Selector

Allows the following selections to be made: AM: for ordinary AM band broadcasts FM MONO: for FM band monaural broadcasts FM AUTO: for both monaural and stereophonic FM band broadcasts. Tuner switches automatically to either signal depending on what is being broadcast.
FM STEREO: for FM stereophonic broadcasts exclusively. Use if stereo signal is too weak and automatic switching is unstable in the FM AUTO position.

Tuning Indicator

Aids in pinpointing stations with the Tuning Knob. Stations are accurately tuned when the needle in this window swings as far to the right as possible, but not necessarily to " 5 ". This movement may vary from station to station.

MPX Noise Canceler

Use to depress disturbing noise when listening to an FM stereo broadcast, but only if disturbing noise occurs. In weak signal areas it may sometimes impair the separation of stereo sounds. High frequency sounds are not affected when this switch is on.

ANTENNA CONNECTION AMPLIFIER CONNECTION

ANTENNA CONNECTION

The quality of reception that can be expected from the TU-777 is largely dependent on the correct positioning and use of antennas. The following procedures are recommended for noise-free reception.

Built-in AM Ferrite Bar Antenna

This sensitive antenna, located on the rear panel of the tuner, is usually adequate for strong AM reception. To use, pull it down and away from the back of the tuner until it comes to a stop halfway between the top and the bottom of the tuner.

Outdoor AM Antenna

In ferroconcrete buildings or in areas remote from the broadcasting station, the built-in ferrite bar antenna may be inadequate for strong AM reception. An outdoor antenna then becomes necessary. This can be accomplished by connecting the PVC wire accompanying the tuner to the antenna terminal marked AM-A on the back panel. Run this wire to an antenna that has been installed outdoors and away from the building. At the same time, the unit should be grounded. Position the outdoor antenna where reception is strongest while actually receiving a broadcast. And, for reasons of safety, be sure to attach a lightning arrester to the outdoor antenna.

FM Antenna

Where FM broadcasting stations are near and FM signals are strong, satisfactory FM reception can be obtained by using the feeder wire accompanying the tuner. Connect the feeder wire to the antenna terminals marked FM- A_{1} and $\mathrm{FM}-\mathrm{A}_{2}$ on the rear panel, then fully extend the wire to a T shape and fix it to a wall or ceiling where it allows the strong. est reception.
If the TU-777 is used in a thick-walled building or in an area remote from FM broadcasting stations, the indoor feeder wire antenna may be inadequate for strong signal reception. An outdoor antenna designed exclusively for FM reception should then

be installed.

FM antennas of the 300 ohm balanced type and 75 ohm unbalanced type can be used with the TU-777. Connect either antenna to the matching antenna terminals on the rear of the tuner. The 300 ohm feeder wire should be connected to the FM antenna terminals A_{1} and A_{2} as in Fig. 1.
If a 75 ohm coaxial cable is used, connect the conductor to the FM antenna terminal A , and the shielding wire to the terminal G as in Fig. 4.
NOTE: FM sensitivity cannot be raised simply by lengthening the antenna. Adjust the antenna's height and direction while actually listening to a broadcast for the best reception.

AMPLIFIER CONNECTION

The TU-777 has been provided with two cords for quick and convenient connection to an amplifier. One is marked L and corresponds to the left stereo channel, the other is marked R and corresponds to the right. If the TU-777 is to be used with Sansui's matching AU-777 amplifier or any other Sansui amplifier, insert the pin plugs of each cord into the amplifier inputs labeled TUNER or AUX respectively. Be sure in either case, that cord L is inserted into the left input and R is inserted into the right input. If the TU-777 is to be used with an amplifier other than Sansui, the same procedures generally hold true, but it is best to check the manufacturer's instructions to be sure.

OPERATION GENERAL MAINTENANCE

RADIO PROGRAMS

To receive AM broadcasts:

1. Turn the Function Selector to AM
2. Select the desired AM station on the AM dial with the Tuning Knob. It is properly tuned when the needle in the Tuning Indicator woves as far to the right as possible.
To receive FM broadcasts:
3. Turn the Function Selector to FM MONO for regular monaural broadcasts, to FM AUTO for both monaural and stereo broadcasts, and to FM STEREO for only stereo broadcasts.
NOTE: If stereo reception is unstable with the Function Selector in the FM AUTO position, turn to FM STEREO.
If too much disturbing noise accompanies a stereo broadcast in either FM STEREO or FM AUTO positions, first switch the NOISE CANCELER on, and if the noise is still too disturbing, turn the Function Selector to FM MONO to hear the same broadcast monaurally.
4. Select the desired FM station on the FM dial with the Tuning Knob. It is properly tuned when the needle in the Tuning Indicator moves as far to ${ }^{\circ}$ the right as possible. The FM Stereo Indicator illuminates automatically whenever an FM stereo broadcast is being received.
5. When too much interstation noise is during tuning, turn the Muting Switch to its On position.
6. It is best to adjust the output level of the tuner to match that of other sound equipment being used with the amplifier. This can be done by turning the LEVEL ADJ. control on the rear of the panel to either a higher or lower level.

GENERAL MAINTENANCE
 FM Stereo Separation

If the channel separation during FM-MPX stereo reception is inadequate or excessive, turn the screw marked MPX SEPARATION on the rear of the tuner for natural proportions. Never attempt to adjust it without reason however, as it has been properly adjusted and tested prior to leaving our factory.

Local-Distant Antenna Switch

This switch helps to adjust the tuner to the strength of FM signals in whatever area it is being used. Set it to DIST if you live in an area where FM signals are weak. If you live near broadcasting stations where there is danger of interference between stations, set the switch to LOC.

Where to Place

Since transistors are extremely susceptible to heat, the TU-777 has been designed to diffuse heat through the top and rear of its case. Therefore, special consideration should be given to where it will be used before installing the tuner. It should not be operated in a place where it is exposed directly to the sun, near radiators or other heatgenerating sources, and it should never be mounted in an air-tight cabinet. Finally nothing should be placed on top of it.

AC Outlet

The TU- 777 has ben provided with a 150 VA power outlet on its rear panel. It can be used an AC power source for other components such as a turntable, but care should be taken not to use it for any component that exceeds its 150 VA power capacity.

Power Fuse

If the tuner fails to operate when the power is switched on, its power fuse may be blown. To check, turn the fuse holder at the rear of the tuner to the left. If it is blown, disconnect the tuner from its power source and replace the fuse with an identical $1 A$ fuse, after finding and eliminating the source of trouble that caused the fuse to blow. Using wire or a fuse of a different capacity as a stop-gap measure is dangerous and should be avoided. If the new fuse blows when the power is switched on again, contact your nearest Sansui dealer or our Service Section.

Level Adjustment Control

This control, labeled LEVEL ADJ. on the rear panel of the tuner, allows the TU-777's output level to match that of turntable, speakers and other components connected to an amplifier. Turned clockwise, it increases the output level of AM and FM broadcasts; turned counter-clockwise, it decreases the output level of both.

Grounding

Connect one end of vinyl or enameled wire to the terminal screw marked GND at the rear of the tuner, attach a copper plate to the other end, and bury it underground. Whenever an outdoor AM antenna is used, grounding becomes necessary. In all cases, grounding is desireable since it allows a better S / N ratio to be obtained.

SPECIFICATIONS CHARACTERISTICS

FM SECTION

FREQUENCY RANGE: From 88 to 108 MHz SENSITIVITY:
Antenna input 300Ω balanced $1.4 \mu \mathrm{~V}$
($\mathrm{S} / \mathrm{N} 20 \mathrm{~dB}$, quieting)
$1.8 \mu \vee$ (IHF)
Antenna input 75Ω unbalanced $0.7 \mu \mathrm{~V}$
(S/N 20 dB , quieting)
$1.0 \mu \mathrm{~V}$ (IHF)
IMAGE REJECTION: Better than 80 dB (IHF)
SELECTIVITY:
Better than 50 dB (IHF)
SIGNAL TO NOISE RATIO: Better than $65 \mathrm{~dB}(60 \mathrm{~dB}$ input, 100% mod.)
HARMONIC DISTORTION: Less than $0.8 \% ~(60 \mathrm{~dB}$ input, 100% mod.)
SPURIOUS RESPONSE REJECTION:
Better than 90 dB
IF REJECTION:
SPURIOUS RADIATION:
CAPTURE RATIO:
Better than 95 dB
Less than 34 dB
Less than 2.5 dB (IHF)
FM STEREO SEPARATION: 35 dB (60 dB input, 100% mod.)

AM SECTION

FREQUENCY RANGE: From 535 to $1,605 \mathrm{kHz}$
SENSITIVITY: $\quad 15 \mu \mathrm{~V}$ (at $1,000 \mathrm{kHz}, \mathrm{S} / \mathrm{N} 20 \mathrm{~dB}$)
SELECTIVITY: Better than 20 dB (at $1,000 \mathrm{kHz}$, 60 dB input)

IMAGE FREQUENCY REJECTION:

Better than 50 dB (at $1,000 \mathrm{kHz}$)
IF REJECTION: Better than 100 dB (at $1,000 \mathrm{kHz}$)
AUDIO OUTPUT 2 V (from 0 to 2 V variable)
LOAD IMPEDANCE: over $10 \mathrm{k} \Omega$

OTHER SPECIAL FEATURES

Circular Dial. Muting. FM Stereo Auto. FM Stereo indicator. FM local/distant Switch. Fly wheel tuning. AM ferrite bar antenna. FET Front end. Function indicator. Audio output Adjustor. Signal Strength (meter). Tuning Meter. FM Stereo Noise Canceller. FM Antenna Input for 300 ohms Balanced and 75 ohms Unbalanced.

TRANSISTORS \& DIODES

28 transistors and 1 FET
24 diodes and 1 Zener diode
POWER REQUIREMENTS
POWER VOLTAGE: $\quad A C 117,220 \sim 240 \mathrm{~V}$, from 50 to 60 Hz

POWER CONSUMPTION: 10 VA
DIMENSIONS:
Width: 139/6"
Height: $\quad 61 / 8^{\prime \prime}$
Depth: $1318^{\prime \prime}$
WEIGHT: 17.1 lbs .
*All rights reserve specifications subject to change without notice.

AMPLITUDE MODULATION SUPPRESSION RATIO

FM MPX SEPARATION

AM SENSITIVITY \& IMAGE RATIO

AM IF SELECTIVITY

GENERAL TROUBLESHOOTING CHART

This section has been prepared to help you quickly and correctly determine the causes, reasons and remedies in situations where your tuner does not perform sasisfactorily. You will note that most of the causes result from improper handling or positioning of the receiver and not from internal defects. For situations that are not covered in this section however, and in instances where you are fairly sure that a breakdown in the tuner's circuitry has occurred, please consult your nearest Sansui dealer or our Service Center.

PROGRAM	SYMPTOM	PROBABLE CAUSE	WHAT TO DO

PROGRAM	SYMPTOM	PROBABLE CAUSE	WHAT TO DO
FM reception	NOTE: FM reception is affected considerably by the conditions of transmission by stations: power and antenna efficiency. As a result, having difficulty in receiving another station.		* Adjust the feeder wire antenna supplied for maximum signal strengh. * If this does not prove effective, use an outdoor antenna designed excluvely for FM. When you use a TV antenna for both TV and FM with the help of a divider, make sure the TV reception is not effected. * An excessively long antenna may cause noise.
\%	B. "Scratch-like" noise is heard.	* Ignition noise caused by the starting of an automobile engine and/or other motors	* Install the antenna and its lead-in wire a proper distance from the road or raise the antenna input as described above.
	C. Tuning noise between stations	* This noise results from the nature of FM reception. As the station signal becomes weak, the noise limiter effect is also decreased. The amplification of the limiter, in turn, is enlarged and thus a big noise is generated.	* Turn on the MUTING switch. In as much as it also reduces the sensitivity, it should be used sparingly.
FM-MPX reception	A. Noise heard during FM-MPX reception while not heard during FM mono reception.	* The service area of the FM-MPX broadcast is only half as much as that of the FM mono broadcast.	* Install the antenna for maximum antenna input. * Switch the NOISE CANCELER to its ON position.
	B. Clearness of channel separation is decreased during the reception.	* Excess heat	* Circulation of air is important to the tuner. Make sure that air can flow underneath.
	C. The stereo indicator goes on and off.	* Interference	* The indicator is not at fault. * Readjust VR_{502}
	D. The stereo indicator goes on and off even though a stereo station is not received.	* Interference	* The indicator is not at fault. * Readjust VR_{502}

DISASSEMBLY PROCEDURE DIAL MECHANISM

CUSTOM MOUNTING

This diagram shows the size and dimensions required for mounting the TU-777 into a custommade cabined. Note that ample space is provided for complete air circulation above and below the tuner

1. Be sure the cabinet window measures $13 \frac{3}{16}{ }^{\prime \prime} \times 5 \frac{15^{\prime \prime}}{64}$ mm as indicated in the diagram.
2. Place two boards on the floor of the cabinet as ilustrated. Boards should measure $\frac{25}{3} 2^{\prime \prime} \times \frac{25}{3} 5^{\prime \prime} \times 10 \frac{5}{8}{ }^{\prime \prime} \mathrm{mm}$
3. Drill two holes in the bottom of the cabinet at points corresponding to holes in the bottom of the tuner.
4. Remove the four rubber feet from the TU-777.
(Retain for future use.)
5. Insert the TU-777 into the cabinet through the window until the edges of its front panel are flush with the cabinet, and secure both tuner and cabinet with washers and butterfly bolts provided.

TEST POINTS CHART

ALIGNMENT PROCEDURE

Any internal parts replacemert or changes, you make in the TU-777 requres proper adjustment again. Approprate test points and adjustments are given on the following pages.

FM ALIGNMENT PROCEDURE

NOTE: To align, set the FM signal generator level to minimum Turn tuning gang fully.
Center carrir wave.
Set pointer at reference mark

STEP	ALIGN	GENERATOR	$\begin{aligned} & \text { FEED } \\ & \text { SIGNAL } \end{aligned}$	OUTPUT INDICATOR	$\begin{gathered} \text { DIAL } \\ \text { SETTING } \end{gathered}$	ADJUST	$\begin{gathered} \text { ADJUST } \\ \text { FOR } \end{gathered}$
1.	IF Transformer	$\begin{aligned} & 10.7 \mathrm{MHz} \\ & \pm 200 \mathrm{kHz} \end{aligned}$	Sweep signal is sent to TP_{101} via the 0.02 pF ceramic capacitor	Oscilloscope is connected to TR_{202} emitter, and then TR_{205} colle etor to ground via the $0.05 \mu \mathrm{~F}$ ceramic capacitor		Primary and secondary sides of $\mathrm{L}_{104}, \mathrm{~T}_{201}, \mathrm{~T}_{202}$ and T_{203}	Best I.F.T. wave from
2.	Discriminator	$\begin{aligned} & 10.7 \mathrm{MHz} \\ & \pm 200 \mathrm{kHz} \end{aligned}$	Sweep signal is sent to 2A via the $0.05 \mu \mathrm{~F}$ ceramic capacitor	Oscilloscope is connected to 2 k via the $0.05 \mu \mathrm{~F}$ capacitor		FM Discriminator transformer T_{204} primary and secondary	S curve
3.	O.S.C.	$\begin{aligned} & 88 \mathrm{MHz} \\ & 400 \mathrm{~Hz} \mathrm{100} \mathrm{\%} \\ & \text { Modulation } \end{aligned}$	To antenna terminals	Oscilloscope and V.T.V.M. at output load	88 MHz	$\begin{aligned} & \text { O.S.C. coil } \\ & \mathrm{L}_{105} \end{aligned}$	Maximum
4.	O.S.C.	$\begin{aligned} & 108 \mathrm{MHz} \\ & 400 \mathrm{~Hz} \mathrm{100} \mathrm{\%} \end{aligned}$ Modulation	To antenna terminals	Oscilloscope and V.T.V.M. at output load	108 MHz	O.S.C. trimmer TC_{104}	Maximum
5.	Repeat 3 and 4		,				
6.	RF Amp. Circuit	$\begin{aligned} & 90 \mathrm{MHz} \\ & 400 \mathrm{~Hz} 100 \% \\ & \text { Modulation } \end{aligned}$	To antenna terminals	Oscilloscope and V.T.V.M. at output load	90 MHz	Antenna coil $\mathrm{L}_{101}, \mathrm{~L}_{102}$ and L_{103}	Maximum
7.	RF Amp. Circuit	$\begin{aligned} & 106 \mathrm{MHz} \\ & 400 \mathrm{~Hz} \mathrm{100} \mathrm{\%} \\ & \text { Modulation } \end{aligned}$	To antenna terminals	Oscilloscope and V.T.V.M. at output load	106 MHz	Trimmer TC_{101}, TC_{102} and TC_{108}	Maximum
8.	Repeat 6 and 7.						

FM DISCRIMINATOR CHARACTERISTIC

FM IF CHARACTERISTIC

ALIGNMENT PROCEDURE

FM MULTIPLEX ALIGNMENT PROCEDURE

1. Do not attempt to align the Multiplex Circuit unless the following equipment is available:
a. Multiplex Stereo Generator b. Oscilloscope c. AC V.T.V.M. d. Audio Oscillator e. FM Signal Generator

STEP	ALIGN	GENERATOR	FEED SIGNAL	OUTPUT INDICATOR	ADJUST	$\begin{gathered} \text { ADJUST } \\ \text { FOR } \end{gathered}$
1.	67 kHz Trap	67 kHz Audio Signal	$\begin{aligned} & \text { Connect to } \\ & \mathrm{TP}_{4 \mathrm{~A}} \end{aligned}$	V.T.V.M. at TP_{404}	L_{401} (MFC-A)	Minimum
2.	71 kHz Trap	71 kHz Audio Signal	$\begin{aligned} & \text { Connect to } \\ & \mathrm{TP}_{4 \mathrm{~A}} \end{aligned}$	V.T.V.m. at TP_{404}	L_{402} (MFC-B)	Minimum
3.	$\begin{aligned} & 19 \mathrm{kHz} \\ & \text { Transformer } \end{aligned}$	FM Signal Gen. Modulated 30\% by STEREO Gen. sub-channel	Antenna terminals Tune to signal	V.T.V.M. and Oscilloscope at TP_{401}	T_{401} (MPT-20A)	Maximum
4.	$\begin{aligned} & 19 \mathrm{kHz} \\ & \text { Transformer } \end{aligned}$	FM Signal Gen. Modulated 30% by STEREO Gen. sub-channel	Antenna terminals Tune to signal	V.T.V.M. and Oscilloscope at TP_{403}	T_{402} (MPT-20B)	Smaller peak value of two peak values
5.	38 kHz Transformer	FM Signal Gen. Modulated 30\% by STEREO Gen. sub-channel	Antenna terminals Tune to signal	V.T.V.M. and Oscilloscope at TP_{403}	T 403 $^{\text {(MPT-20B) }}$	Smaller peak value of two peak values
6.	38 kHz Transformer and Separation VR	FM Signal Gen. Modulated 30\% by STEREO Signal Gen. channel-L	Antenna terminals Tune to signal	V.T.V.M. and Oscilloscope at output load channel-R	$\begin{aligned} & \mathrm{T}_{4003}(\text { MPT-20B }) \\ & \text { within 1/4 turn } \\ & \text { and separation } \\ & \text { VR(VR } \mathrm{VR}_{601} \text {) } \end{aligned}$	Channel-R Minimum

AM ALIGNMENT PROCEDURE

NOTE: To align, set the AM signal generator level to minimum.

STOP	ALIGN	GENERATOR	$\begin{aligned} & \text { FEED } \\ & \text { SIGNAL } \end{aligned}$	OUTPUT INDICATOR	$\begin{gathered} \text { DIAL } \\ \text { SETTING } \end{gathered}$	ADJUST	$\begin{gathered} \text { ADJUST } \\ \text { FOR } \\ \hline \end{gathered}$
1.	I.F. Transfor- mer	$\begin{aligned} & 455 \mathrm{kHz} \\ & \pm 30 \mathrm{kHz} \\ & \text { Sweep-generator } \end{aligned}$	Antenna terminals	Oscilloscope and V.T.V.M. at TP_{302}		Primary and secondary sides from the lst I.F.T. $\left(\mathrm{T}_{302}\right)$ to the 3rd I.F.T. $\left(\mathrm{T}_{304}\right)$	Best I.F.T. wave form
2.	O.S.C	AM-generator $533 \mathrm{kHz} 30 \%$ $400 \mathrm{~Hz} 30 \%$ Modulation	Antenna terminals	Oscilloscope and V.T.V.M. at output load	535 kHz	O.S.C. Coil T_{302}	Maximum
3.	O.S.C	$\begin{aligned} & \text { AM-generator } \\ & 1600 \mathrm{kHz} \\ & 400 \mathrm{~Hz} 30 \% \\ & \text { Modulation } \end{aligned}$	Antenna terminals	Oscilloscope and V.T.V.M. at output load	1600 kHz	O.S.C. Trimmer cap. TC_{303}	Maxımum
4.	Reiterate 2 and 3						
5.	RF amp.	$\begin{aligned} & \text { AM-generator } \\ & 600 \mathrm{kHz} \\ & 400 \mathrm{~Hz} 30 \% \\ & \text { Modulation } \\ & \hline \end{aligned}$	Antenna terminals	Oscilloscope and V.T.V.M. at output load	600 kHz	RF transformer T_{301}	Maximum
6.	Antenna circuit	AM-generator 500 kHz $400 \mathrm{~Hz} 30 \%$ Modulation	Antenna terminals	Oscilloscope and V.T.V.M. at output load	1400 kHz	Ferrite bar Antenna coil L_{301}	Maximum
7.	RF amp.	AM-generator 1400 kHz $400 \mathrm{~Hz} 30 \%$ Modulation	Antenna terminals	Oscilloscope and V.T.V.M. at output load	1400 kHz	RF Trimmer TC_{302}	Maximum
8.	Antenna circuit	AM-generator 1400 kHz $400 \mathrm{~Hz} 30 \%$ Modulation	Antenna terminals	Oscilloscope and V.T.V.M. at output load	1400 kHz	Antenna circuit Trimmer TC_{301}	Maximum
9.	Reiterate $5,6,7,8$						

AM IF CHARACTERISTIC

PRINTED-CIRCUIT SHEETS \& PARTS LIST

FM, AM IFT F-1014

X	Y				Z
R201	$3.3 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	2 A
R202	$6.8 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	1 A
R203	$1 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	2 A
R204	$1 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	1 A
R205	$1 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	2 A
R206	$10 \mathrm{k} \Omega$	$1 / 4 W$	$\pm 10 \%$	PREC. Fixed	1 A
R207	$5.6 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	1 A
R208	$1.5 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	2 B
R209	470Ω	1/4W	$\pm 10 \%$	PREC. Fixed	1 B
R210	$5.6 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	2 B
R211	$8.2 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	2 B
R212	22Ω	1/4W	$\pm 10 \%$	PREC. Fixed	1 B
R213	$1 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	2 B
R214	680Ω	1/4W	$\pm 10 \%$	PREC. Fixed	2 C
R215	22Ω	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	1 C
R216	$6.8 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	2 C
R217	$8.2 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	1 C
R218	$1 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	2 C
R219	$1 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	1 D
R220	22Ω	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	1 D
R221	$10 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	1 D
R222	$1 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	1 D
R223	$1 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	1 E
R224	22Ω	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	1 E
R225	$1 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	1 E
R226	$1 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	1 E
R227	68Ω	1/4W	$\pm 10 \%$	PREC. Fixed	1 E
R228	$10 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	2 E
R229	$10 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	1 F
R230	$1 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	2 D
R231	$10 \mathrm{k} \Omega$	$1 / 4 W$	$\pm 10 \%$	PREC. Fixed	2 D
R232	$22 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	2 D

X	\mathbf{Y}				Z
R233	22Ω	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	2 D
R234	$47 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	2 C
R235	$18 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	2 C
R236	$12 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	2 C
R237	$39 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	2 B
R238	$6.8 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	1 F
R239	$100 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	2 E
R240					
R241	$2.2 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	2 F
R242	$560 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	2 F
R243	$10 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	2 F
R301	$1 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	3 A
R302	120Ω	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	3 C
R303	$4.7 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	3 B
R304	$22 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	4 B
R305	$1.5 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	3 B
R306	100Ω	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	3 E
R307	$68 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	4 C
R308	$5.6 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	4 D
R309	$1 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	3D
R310	$1 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	3D
R311	$1 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	RREC. Fixed	3 C
R312	$1 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	3D
R313	$4.7 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	3,4D
R314	$15 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	4 E
R315	$1 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	3D, E
R316	$1 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	3 E
R317	$5.6 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	3 E
R318	$15 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	3 F
R319	$68 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	3 F
R320	$12 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	3 F

X: Parts No
Y: Parts Name
Z: Position of Parts
(Co-ordinate number and letter in printed circuit)

X	Y					Z
R321	$1 \mathrm{k} \Omega$	1/4 W	$\pm 10 \%$	\% PREC.	Fixed	4 F
R322	$1.5 \mathrm{k} \Omega$	1/2W	$\pm 10 \%$	\% PREC.	Fixed	3 E
C201	$0.01 \mu \mathrm{~F}$	${ }^{+100 \%}$	50 V	VDCW.	CER.	1 A
C202	$0.01 \mu \mathrm{~F}$	$\pm{ }^{+100} \%$	50 V	VDCW.	CER.	1, 2 A
C203	$0.02 \mu \mathrm{~F}$	$\pm{ }^{+100} \%$	50 V	VDCW.	CER.	2 A
C204	$0.02 \mu \mathrm{~F}$	$\pm{ }^{+100} \%$	50 V	VDCW.	CER.	2 A
C205	$0.02 \mu \mathrm{~F}$	${ }^{+100} \%$	50 V	VDCW.	CER.	1 A
C206	$0.02 \mu \mathrm{~F}$	$\pm{ }^{+100 \%}$	50 V	VDCW.	CER.	2 B
C207	$0.02 \mu \mathrm{~F}$	$\pm{ }^{+100} \%$	50 V	VDCW.	CER.	2 B
C_{208}	10 pF	$\pm 10 \%$	50	VDCW.	CER.	2 B
C209	$0.02 \mu \mathrm{~F}$	$\pm 100 \%$	50 V	VDCW.	CER.	1 B
C210	$0.02 \mu \mathrm{~F}$	$\pm{ }^{+100 \%}$	50 V	VDCW.	CER.	2 C
C_{211}	$0.02 \mu \mathrm{~F}$	$\pm{ }^{+100 \%}$	50 V	VDCW.	CER.	2 C
C_{212}	$0.02 \mu \mathrm{~F}$	$\pm{ }^{+100 \%}$	50 V	VDCW.	CER.	1 C
C_{213}	$0.02 \mu \mathrm{~F}$	$\pm{ }^{+100 \%}$	50 V	VDCW.	CER.	1,2C
C_{214}	$0.02 \mu \mathrm{~F}$	$\pm{ }_{-100 \%}$	50 V	VDCW.	CER.	1 D
C215	$1 \mu \mathrm{~F}$		50 W	WV	Elect.	2E, F
C_{216}	$0.02 \mu \mathrm{~F}$	$\pm{ }^{+100} \%$	50 V	VDCW.	CER.	1,2 D
C_{217}	200 pF	$\pm 10 \%$	50 V	VDCW.	CER.	1 F
C_{218}	200 pF	$\pm 10 \%$	50 V	VDCW.	CER.	1 F
C219	$10 \mu \mathrm{~F}$		10 V	VDCW.	ELECT.	1 F
C_{220}	50 pF	$\pm 10 \%$	50 V	VDCW.	CER.	1 F
C_{221}						1 F
C_{222}	$0.02 \mu \mathrm{E}$	$\pm{ }^{+100} \%$	50 V	VDCW.	CEP.	1 F
C_{223}	$0.02 \mu \mathrm{~F}$	${ }^{+100 \%}$	50 V	VDCW.	CER.	2 F
$\begin{aligned} & \mathrm{C}_{224} \\ & \mathrm{C}_{225} \end{aligned}$	$0.02 \mu \mathrm{~F}$	$\pm{ }^{+100 \%}$	50 V	VDCW.	CER.	2 E
C_{226}	10 pF	$\pm 10 \%$	50 V	VDCW.	CER.	2 C
C_{227}	$0.02 \mu \mathrm{~F}$	+100\%	50 V	VDCW.	CER.	2 E
C_{228}	$0.02 \mu \mathrm{~F}$	$\pm{ }^{+100 \%}$	50 V	VDCW.	CER.	2 C
C229	$0.02 \mu \mathrm{~F}$	$\pm{ }^{+100} \%$	50 V	VDCW.	CER.	2 B
C_{230}	$0.02 \mu \mathrm{~F}$	$\pm{ }^{+100 \%}$	50 V	VDCW.	CER.	2 B
$\begin{aligned} & \mathrm{C}_{231} \\ & \mathrm{C}_{232} \end{aligned}$	$0.02 \mu \mathrm{~F}$	$\pm{ }^{+100 \%}$	50 V	VDCW.	CER.	2 B
C_{233}	$0.02 \mu \mathrm{~F}$	+100\%	50 V	vocw.	CER.	2 F
C234	$10 \mu \mathrm{~F}$		10 W	WV	ELECT.	2 A
C_{235}	$0.01 \mu \mathrm{~F}$	$\pm{ }^{100} \%$	50 V	VDCW.	CER.	2 A
C_{236}	$0.02 \mu \mathrm{~F}$	$\pm 100 \%$	50 V	VDCW.	CER.	2 A
C301	$0.03 \mu \mathrm{~F}$	$\pm{ }^{+100 \%}$	50 V	VDCW.	CER.	3 A
C302	$0.02 \mu \mathrm{~F}$	+100\%	50 V	VDCW.	CER.	$3 \mathrm{~A}, \mathrm{~B}$
С303	$200 \mu \mathrm{~F}$		15 W	WV	ELECT.	3 C
C304	$0.02 \mu \mathrm{~F}$	$\pm{ }^{+100 \%}$	50 V	VDCW.	CER.	3 A
C305	$0.02 \mu \mathrm{~F}$	$\pm{ }^{+100 \%}$	50 V	VDCW.	CER.	3 C
C306	$0.02 \mu \mathrm{~F}$	${ }^{+100} \%$	50 V	VDCW.	CER ${ }^{\text {P }}$	2 D
C307	430 pF	$\pm 5 \%$	50 V	VDCW.	Mc.	4 C

X					

PRINTED-CIRCUIT SHEETS \& PARTS LIST

FM MULTIPLEX F-1013

X	Y				Z
R401	$47 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	1 C
R402	$100 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	2 C
R403	$220 \mathrm{k} \Omega$	1/4 W	$\pm 10 \%$	PREC. Fixed	2 C
R404	$3.3 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	1,2C
R405	$1.5 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	2 C
R406	$27 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	2 B
R407	$270 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	2 B
R408	22Ω	1/4W	$\pm 10 \%$	PREC. Fixed	2 B
R409	$15 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	2 B
R410	$68 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	1 A
R411	$27 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	2 B
R412	$270 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC. Fixed	2 B
R413	120Ω	1/4W	$\pm 10 \%$	PREC. Fixed	2 B

X: Parts No
Y: Parts Name
Z: Position of Parts
(Co-ordinate number and letter in printed circuit)

FM STEREO INDICATOR TRI-1A

X	Y					Z
R501	$3.3 \mathrm{k} \Omega$	1/2W	$\pm 10 \%$	COM	P. Fixed	2 A
R502	$1 \mathrm{M} \Omega$	$1 / 2 \mathrm{~W}$	$\pm 10 \%$	COM	P. Fixed	1 A
R503	$1 \mathrm{k} \Omega$	$1 / 2 \mathrm{~W}$	$\pm 10 \%$	COM	P. Fixed	1 A
R504	$39 \mathrm{k} \Omega$	$1 / 2 \mathrm{~W}$	$\pm 10 \%$	COM	P. Fixed	1 A
R505	$27 \mathrm{k} \Omega$	$1 / 2 \mathrm{~W}$	$\pm 10 \%$	COM	P. Fixed	1 C
R506	$10 \mathrm{k} \Omega$	$1 / 2 \mathrm{~W}$	$\pm 10 \%$	COM	P. Fixed	1 C
R507	$15 \mathrm{k} \Omega$	$1 / 2 \mathrm{~W}$	$\pm 10 \%$	COM	P. Fixed	2 C
R508	$8.2 \mathrm{k} \Omega$	1/2W	$\pm 10 \%$	COM	P. Fixed	2 C
R509	$22 \mathrm{k} \Omega$	$1 / 2 \mathrm{~W}$	$\pm 10 \%$	COM	P. Fixed	2 C
R510	$3.3 \mathrm{k} \Omega$	$1 / 2 \mathrm{~W}$	$\pm 10 \%$	COM	P. Fixed	2 C
R511	$22 \mathrm{k} \Omega$	$1 / 2 \mathrm{~W}$	$\pm 10 \%$	COM	P. Fixed	2 B
R512	390Ω	$1 / 2 \mathrm{~W}$	$\pm 10 \%$	COM	P. Fixed	2 C
C501	$0.1 \mu \mathrm{~F}$	$\pm 10 \%$	\% 50 V	CW.	My.	1 A
C_{502}	5000 pF	$\pm 5 \%$	- 50	CVW.	Mc.	1 B
C503	$30 \mu \mathrm{~F}$		15	V	ELECT.	1 C
C504	$10 \mu \mathrm{~F}$		15		ELECT.	2 A
C505	$1 \mu \mathrm{~F}$		25	V	ELECT.	1 A
T501	19 kHz	Tuning	trap			1 B
VR501	$50 \mathrm{k} \Omega$ (B)	Stereo	indicat	AD		1 A
VR502	$100 \mathrm{k} \Omega$ (B)	Stereo	indicat	r AD		1 A
TH501	D-22A	Thermis	stor			2 C
TR501	2SC-458		Si N-P-N			1 A
TR502	2SC-458		Si N-P-N			1 A
TR503	2CB-54		Ge P-N			2 B
TR504	2SC-458		Si N-P-			2 B

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	
TR505	2CB-324	Ge P-N-P	2 A
D501	OA-91(IN-60)	Ge diod	1 C
D502	SM-150(10D-2)	Si diod	1 B
D503	OA-91(IN-60)	Ge diod	2 A

POWER CIRCUIT F-1045B

\mathbf{X}	\mathbf{Y}			\mathbf{Z}
R001	330Ω	2 W	$\pm 10 \%$	PREC. Fixed
R002	220Ω	IW	$\pm 10 \%$	PREC. Fixed

PRINTED-CIRCUIT SHEETS \& PARTS LIST

X: Parts No
Y: Parts Name
Z: Position of Parts
(Co-ordinate number and letter in printed circuit)

AUDIO AMP. F-1044

\mathbf{X}		\mathbf{Y}			\mathbf{Z}
R601	$1 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	1 A
R602	$1 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	2 A
R603	$270 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	1 A
R604	$270 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	2 A
R605	$100 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	1 B
R606	$100 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	2 B
R607	$1 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	1 A
R608	$1 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	2 A
R609	220Ω	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	1 B
R610	220Ω	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	2 B
R611	$270 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	1 B
R612	$270 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	2 B
R613	$5.6 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	1 B
R614	$5.6 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	2 B
R615	820Ω	$1 / 4 \mathrm{~W}$	$\pm 10 \%$	PREC. Fixed	$1 \mathrm{~B}, \mathrm{C}$

X	Y					Z
R616	820Ω	1/4W	$\pm 10 \%$	PREC	Fixed	2B, C
R617	$22 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC	Fixed	1B, C
R618	$22 \mathrm{k} \Omega$	1/4W	$\pm 10 \%$	PREC	Fixed	$2 \mathrm{~B}, \mathrm{C}$
C601	$1 \mu \mathrm{~F}$		15 W		ELECT.	1 A
C602	$1 \mu \mathrm{~F}$		15 W		ELECT.	2 A
C603	100 pF	$\pm 10 \%$	50 V	DCW.	CER.	1 A
C604	100 pF	$\pm 10 \%$	50 V	DCW.	CER.	2 A
C605	100 pF	$\pm 10 \%$	50 V	VCW.	CER.	1 B
C606	100 pF	$\pm 10 \%$	50 V	DCW.	CER.	2 B
C607	$30 \mu \mathrm{~F}$		6 W	WV	ELECT.	1 C
C608	$30 \mu \mathrm{~F}$		6 W	WV	ELECT.	2 C
C609	$10 \mu \mathrm{~F}$		25 W		ELECT.	1 B
C610	$10 \mu \mathrm{~F}$		25 W		ELECT.	2 B
TR601	2SC693F		Si N-P-		(030517-1)	1 A
TR602	2SC693F		Si N-P-		(030517-1)	2 A
TR603	2SC536E		Si N-P-		(030515-4)	18
TR604	2SC536E		Si N-P-		(030515-4)	2 B

BLOCK DIAGRAM

OTHER PARTS \& THEIR POSITION ON CHASSIS

X: Parts No
Y: Parts Name

